

konstante Funktion → S.6

lineare Funktion

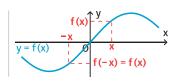
Symmetrie von Graphen

Symmetrie zum Koordinatenursprung

Der Graph einer Funktion f ist genau dann punktsymmetrisch zum Koordinatenursprung, wenn f(x) = -f(-x) für alle $x \in D$, gilt.

Funktionen und ihre Graphen

Eine solche Funktion f heißt ungerade Funktion.



Lineare Funktionen und Geraden

Lineare Funktion

Hauptform: $y = f(x) = mx + n \ (m, n \in \mathbb{R}; \ m \neq 0)$ $D_{r} = \mathbb{R}, W_{r} = \mathbb{R}$

Der Graph einer linearen Funktion ist eine Gerade

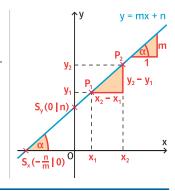
mit der Steigung m und dem v-Achsenabschnitt n.

Steigung: $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x_1 + x_2)$

m > 0: steigende Gerade m < 0: fallende Gerade

Steigungswinkel: α ; $tan(\alpha) = m$

Nullstellen: $x_0 = -\frac{n}{m}$

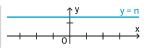


Konstante Funktion

 $v = n \ (n \in \mathbb{R})$

 $D_{\iota} = \mathbb{R}, W_{\iota} = \{n\}$

Der Graph ist eine Parallele zur x-Achse.

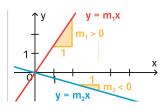


Proportionale Funktion

$$y = mx (m + 0)$$

 $D_{r} = \mathbb{R}, W_{r} = \mathbb{R}$

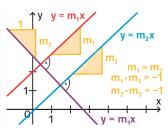
Der Graph einer proportionalen Funktion ist eine Urspungsgerade mit der Steigung m.



Zueinander parallele und zueinander senkrechte Geraden

Zwei Geraden mit den Steigungen m, bzw. m, sind genau dann zueinander parallel, wenn $m_1 = m_2$ gilt.

Zwei Geraden mit den Steigungen m, bzw. m, sind genau dann zueinander senkrecht, wenn $m_1 \cdot m_2 = -1$ gilt.



Koordinatengleichungen von Geraden in der Ebene

Allgemeine Form

ax + by + c = 0 (a, b, $c \in \mathbb{R}$; $a^2 + b^2 \neq 0$)

a = 0 und b + 0: konstante Funktion; Parallele zur x-Achse

 $a \neq 0$ und b = 0: Parallele zur y-Achse

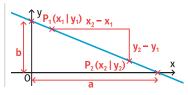
a # 0 und b # 0: lineare Funktion

Zwei-Punkte-Form

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

Achsenabschnittsform

 $\frac{x}{a} + \frac{y}{b} = 1$ (a \div 0 und b \div 0)



Allgemeine Form

 $y = f(x) = ax^2 + bx + c$ (a, b, $c \in \mathbb{R}$; $a \neq 0$)

Diskriminante: $D = b^2 - 4ac$

 $D_f = \mathbb{R}$; $W_f = \left\{ y \mid y \ge -\frac{D}{4a} \right\}$ für a > 0 bzw.

 $W_t = \left\{ y \mid y \le -\frac{D}{4a} \right\}$ für a < 0

Scheitelpunkt: $S\left(-\frac{b}{2a}\right|-\frac{D}{4a}\right)$

Nullstellen: $x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$ (D \ge 0)

Der Graph einer quadratischen Funktion ist

eine Parabel.

 $y = x^2$: Normalparabel

Normalform

 $y = f(x) = x^2 + px + q$ (p, q $\in \mathbb{R}$)

Diskriminante: $D = \left(\frac{p}{2}\right)^2 - q$

 $D_{\ell} = \mathbb{R}; W_{\ell} = \{y \mid y \ge -D\}$

Scheitelpunkt: $S\left(-\frac{p}{2}|-D\right)$

Nullstellen: $x_{1,2} = -\frac{p}{2} \pm \sqrt{D}$ (D \ge 0)

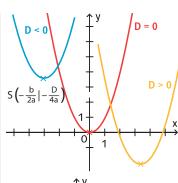
Scheitelpunktform

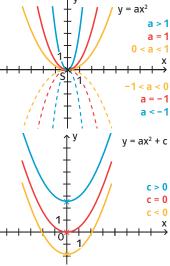
 $y = f(x) = a(x - d)^2 + e$

 $(a, d, e \in \mathbb{R}; a \neq 0)$

Nullstellen: $x_{1,2} = d \pm \sqrt{-\frac{e}{a}} \left(\frac{e}{a} \ge 0\right)$

Scheitelpunkt: S(dle)





Quadratische **Funktionen** und Parabeln